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Instructions Covered

• Checksum

• Update Tree

• Compare and Form 

Codeword

• Perform Locked Operation

• Load Pair Disjoint

• Population Count

• Store Clock Fast

• Monitor Call

• Translate One/Two to 

One/Two

• Search String Unicode

• Convert Unicode



Checksum

• Format: CKSM R1,R2

• Compute 32-bit checksum – unsigned “sum” of 

consecutive words in memory modulo 232

• The sum is calculated in one’s complement representation, 

i.e. negative numbers are simply negated

• Contrast this with the standard two’s complement 

representation used on the architecture (negative number is 

negated +1)

• To simulate one’s complement addition, after each word is 

added as usual, the carry of result is added to it



Checksum – continued

• The memory area is specified by register pair

• R2 contains the address (depends on addr. mode)

• R2 +1 contains the length (32 or 64 bit unsigned integer 

depending on addr. mode)

• If length is not divisible by 4, the area is padded with 0 bytes

• R2, R2 +1 are modified during the instruction

• The unsigned 32-bit result is added to low word of R1 (so 

you need to clear it at the beginning)

• Returns CC=0 on success, CC=3 if interrupted



Checksum example

• Computing 16-bit TCP/IP checksum:

XR R0,R0 R2,R3 -> ’HELLO WORLD’

CKSM R0,R2 R0 = x’78DA7EAB’, R3 = 0

LR R2,R0 R2 = x’78DA7EAB’

SRDL R2,16 x’000078DA7EAB0000’

ALR R2,R3 R2 = x’7EAB78DA’

ALR R2,R0 R2 = x’F785F785’

SRL R2,16 R2 = x’0000F785’

• Another possible use would be to compute entry into hash 

table with prime size



Update Tree – introduction

• The purpose of  Update Tree (UPT) instruction is to help 

implement a single algorithm, multi-way merge sorting

• The purpose of Compare and Form Codeword (CFC) 

instruction is to allow having keys of any length in this 

algorithm

• I will first explain the algorithm, and then how the 

instructions help in the implementation



• We have several sorted input sequences, and we merge 

them into a single sequence, which will be sorted

• If we start from sequences of length one, iteratively, we 

sort any sequence (in descending order)

• To merge the sequences, we pick the largest among the 

first elements in the sequences

• We use a special tree – see next slide for layout

• Node of the tree will have 4 byte key and 4 byte value

Multiway Merge Sorting

73, 51, 48, 31, 16 

60, 37, 33, 32, 12 

68, 63, 57, 34, 19

73, 68, 63, 60, 57, 51, 48, 37, 34, 33, 32, …



Merge Tree Layout

• Example of tree node addresses (hex) for 8 sequences

• 7 internal nodes of the tree, in memory stored by rows, 

dummy root node first, then the root node

• Parent node address = (Node address / 16) * 8

40 48 50 58 60 68 70 78

20 28 30 38

10 18

0800



Priming the Merging Tree

• Assume leaf nodes of the tree contain the first values in 

the sequences to be merged

• It’s like a tournament - we go from the bottom up, at each 

internal node we compare the two keys, we store the 

smaller key (“loser”) and value in the node, the larger key 

(“winner”) and value continues to the higher row

• So at the top (dummy node) the largest key will emerge, 

and we put the 2nd largest to the root node

• The update operation (see next) can be used to prime the 

tree too (put lowest possible values in internal nodes and 

add leaf nodes with UPT)



Priming the Merging Tree

27 84 68 76 38 57 59 40

27 68 38 40

76 57

5984

27 vs 84 68 vs 76 38 vs 57 59 vs 40

84 vs 76 57 vs 59

84 vs 59



Updating the Merging Tree

• Take the next element from the sequence where the 

previous winner originated

• Update elements on the path from the new element to the 

top by storing the “loser” and letting winner to go the top

27 58 68 76 38 57 59 40

27 76 57 59

58 40

5976

58 vs 27

58 vs 76 

76 vs 59



Update Tree

• Format: UPT

• Uses registers 0-5 as follows:

• R0: Key portion of the current “winner”

• R1: Value portion of the current “winner”

• R2 & R3: Node contents if key was equal

• R4: Address of the tree (the dummy node above root)

• R5: Index of the start (or current) node

• The tree is a structure described above:

• Each node has 8 bytes, 4 byte key and 4 byte value

• Address R4 and index R5 must be doubleword aligned

• These regs. are modified during the operation



Update Tree operation

• Move to parent node by setting R5 := (R5 / 16) * 8

• If R5=0, finish with CC=1

• If R0 negative, finish with CC=3

• Current node address = R4 + R5

• Compare R0 to the key in the current node

• If equal, store in R2 and R3 the key and value in the current 

node, finish with CC=0

• If R0 lower, swap R0 and key in the node and swap R1 and 

value in the node

• Repeat this process



Codeword

• To extend the previous algorithm with keys of any (fixed) 

size, we use codewords

• The construction depends whether we sort in ascending or 

descending order

• Codeword is 4-byte value, formed as a result of 

lexicographic comparison of two keys (halfword-wise): 

• Higher halfword is the index to the uncompared key portions

• Lower halfword is a 

• first lexicographically different halfword of the lower operand (to 

merge in descending order)

• complement of the first lexicographically different halfword of the 

higher operand (to merge in ascending order)



Codeword example

• Low key x’1122 3344 5566’

• High key x’1122 3344 5577’

• Codeword for descending order x’00065566’

• Codeword for ascending order x’0006AA99’

• Low key x’00DE ADBA BE34’

• High key x’00DE ADBE EF36’

• Codeword for descending order x’0004ADBA’

• Codeword for ascending order x’00045241’



Compare and Form Codeword

• Format: CFC D2(B2)

• Compares two memory areas by consecutive halfwords

• Base addresses of the areas are in R1 and R3 (both 

halfword aligned)

• R2 is used as index to the halfword being compared

• Index limit is low 15 bits of effective address D2(B2), it 

defines the length of the memory areas

• Lowest bit of effective address D2(B2) is operation control

• Determines if we are constructing codeword  for ascending or 

descending sort

• Assume 0, i.e. ascending, for the explanation



Compare and Form Codeword

• If R2 is larger than index limit, CC=0 and finish

• Compare halfwords at addresses R1+R2 and R3+R2

• Increment R2 by 2 (index to next halfword)

• If halfwords are equal, repeat from the beginning

• Shift R2 left by 16 bits (to make room)

• If 1st halfword is lower than 2nd, put complement of the 

2nd halfword into low halfword of R2, CC=1

• If 1st halfword is higher than 2nd, put complement of the 

1st halfword into low halfword of R2, swap R1 and R3, 

CC=2

• Resulting R2 is the “codeword”, R1 points to lower key



Using codewords

• In the above tree update operations, we can replace the 

tree keys with codewords resulting from the compare 

between the “loser” and “winner”

• Now consider:

• All the codewords along the path from where the previous 

winner originated to the top of the tree were created by 

comparison to this previous winner

• The codeword for the new element is created by comparing it 

to the previous winner, and we introduce the new element to 

the node where the previous winner originated 

• So, during the update operation, there are 3 keys in play: 

key of the last winner W, key of the new element N and 

key of the node we currently process C



Using codewords during Update Tree

• We know W <= C and W <= N (that’s why W is the winner)

• At each node, we compare codeword CWC between W and 

C and codeword CWN between W and N, 3 possibilites:

• N differs sooner from W and C (because N > C), then the first 

halfword of CWC is higher than first halfword of CWN; so C 

wins over N

• N differs at the same halfword as W and C; then the second 

halfwords of CWC and CWN determine the correct winner

• N differs later from W and C (i.e. shares longer equal prefix 

with C than with W); then CWC = CWN and update stops; we 

use CFC to compare C to N and store codeword CCN into the 

node and continue

• During update, at each node the new key N can be 

different!



Perform Locked Operation

• Format: PLO R1,D2(B2),R3,D4(B4)

• Acquires a lock specified by address in R1, then performs 

operation specified in R0, and releases the lock

• The operations possible are various “compare and swaps”, 

“compare and loads”, “compare and swap and stores” 

(various sizes etc.)

• 14 pages of description in Principles of Operation



Never Perform Locked Operation

• I would not recommend using this instruction at all

• It has a fatal flaw – the lock

• The lock is not synchronized with the other instructions of the 

same name (such as Compare and Swap), so you cannot 

combine them

• And acquiring the lock is almost same as doing CS

• PLO also requires complex parameter lists for most 

operations

• Use the CS, CDS or CSST instructions instead



Load Pair Disjoint

• Format: LPD R3,D1(B1),D2(B2)

• Register R3 is loaded from address D1(B1), and register 

R3+1 is loaded from address D2(B2), interlocked

• R3 specifies an even-odd register (32-bit) pair

• The access is usually interlocked, i.e. no other processor can 

modify one of the locations fetched – if access was 

interlocked, CC=0 is set, if not, CC=3 is set

• This is new instruction on z196

• There is also LPDG, which operates with 64-bit registers

• Use case: test a lock and retrieve a value at the same time



Population Count

• Format: POPCNT R1,R2

• Count the number of bits in each of the 8 bytes of (64-bit) 

register R2 and place the count into the corresponding byte 

of R1

• Sets CC=0 if result is all 0, CC=1 otherwise

• This is new instruction on z196

• Sadly, this instruction obsoleted many elegant (or not) 

algorithms to do this by hand

• Useful for operations with bitmaps (such as computing size 

of a set given by bitmap)



Population Count example

• To compute total number of bits of R15 = 

x’FEDCBA9876543210’ into R8, do this (uses R9 as a 

work register):

POPCNT R8,R15 R8=x’0705050305030301’

AHHLR R8,R8,R8 R8=x’0C08080405030301’

SLLG R9,R8,16 R9=x’0804050303010000’

ALGR R8,R9 R8=x’140C0D0708040301’

SLLG R9,R8,8 R9=x’0C0D070804030100’

ALGR R8,R9 R8=x’2019140F0C070401’

SRLG R8,R8,56 R8=x’0000000000000020’



Store Clock Fast

• Format: STCKF D2(B2)

• Like STCK (stores internal 8-byte TOD clock at the 

specified address), but “fast”

• Fast means, in this context, that the other processors are 

not serialized. 

• With STCKF, it can happen that you get earlier time on 

processor where this instruction executed demonstrably later. 

• With STCK, causality of the universe is preserved.

• To be future-proof use STCKE, which is also serialized

• And uses 128-bit extended TOD clock



Monitor Call

• Format: MC D1(B1),I2

• This instruction will invoke monitor event program interrupt 

(code 0x40)

• During interrupt, the effective 64-bit address D1(B1) (monitor 

code) is stored at real location 176, and the byte of 

immediate value I2 (monitor class) is stored at real location 

149

• The interrupt can be masked with 16 monitor-mask bits in 

CR8, which correspond to value of low 4 bits in monitor class 

(0 in mask bit means MC will be no-op)



Monitor Call extended

• On z196, this instruction can do hardware counting instead 

of an interrupt

• If the bit of 16-bit enhanced-monitor-mask in CR8 

corresponding to monitor class is 1, MC won’t cause 

interrupt, but will instead increment a counter in the table in 

memory

• The index to the counter in the table is the monitor code

• The table address and number of entries are described at 

real address 264

• Effectively, the counters are 48-bit (but the organization of 

the table is a bit unusual)



Translate One/Two to One/Two
(TROO, TROT, TRTO, TRTT)

• Format: TRxx R1,R2[,M3]

• These 4 ultimate translation instructions:

• Read single or double byte characters from source location 

• Translate them according to table to single or double byte 

characters, prematurely ending if a specified testing 

character after translation is encountered

• Store the translated characters at another location

• This is an extended version of extended versions of TR 

and TRT



Translate One/Two to One/Two usage 

• R1 specifies address of the source data

• R1+1 specifies length of the source data (up to 2GB in 

AMODE 31)

• R2 specifies address of the destination (where to store the 

translation)

• R0 specifies testing character (low byte for TROO and 

TRTO, low halfword for TRTO and TRTT)

• R1 specifies address of translation table (must be either 

4K page-boundary or doubleword aligned, depends on 

processor)

• Depending on processor, if M3=1, then testing character is 

not used



Translate One/Two to One/Two usage

• Table of translation tables:

• As usual for complex instructions, these change the 

contents of the registers as one would expect

• Sets CC=0 if entire operand was processed, CC=1 if equal 

testing character was encountered, CC=3 if not entire 

operand processed (can just restart in that case to finish)

Instruction
Source 

character size

Destination & testing 

character size

Translation 

table size

TROO 1 1 256

TROT 1 2 512

TRTO 2 1 65536

TRTT 2 2 131072



Search String Unicode

• Format: SRSTU R1,R2

• Search a specified double-byte character in a given 

memory area

• The memory area starts at address in R2 and ends at 

address R1 (R1 points to first byte behind it)

• The character is in low halfword of R0, high halfword 0

• Returns:

• CC=1 if the character was found, its address in R1

• CC=2 if the character was not found

• CC=3 if string wasn’t fully searched, R2 is updated with the 

new address, so you can just restart the instruction 



Quick Field Guide to Unicode

• Character values from 0 – 10FFFF

• Almost all languages, ~110 000 assigned characters

• UTF-32 encoding: 4 bytes per character, direct value (best 

for internal use, not storage)

• UTF-16 encoding: mostly 2 bytes per character, codes 

above 10000 are represented as pair of values D800-

DBFF and DC00-DFFF (surrogate pair)

• UTF-8 encoding: 1-4 bytes per character (higher values 

are longer), the 1-byte codes are same as 7-bit ASCII, it’s 

possible to find the start of the character from random byte 

in the stream



Convert Unicode

• Format: CUnn R1,R2[,M3]

• Convert from Unicode encoding to Unicode encoding -

between UTF-8, UTF-16, UTF-32

• Processes characters from the source field and copies them 

to destination field

• Both R1 and R2 denote a register pair; each pair determines 

starting address and length of area in storage, R2 source and 

R1 destination (similar to MVCL, except length is 32-bit)

• Some variants have optional M3 parameter, which, if set to 1, 

will cause well-formedness checking of the source encoding

• z/OS has CSRUNIC macro, which can apparently call 

some of these instructions



Convert Unicode variations

Instruction
Source 

encoding

Destination

encoding

Well-formedness

checking

CU12 (CUTFU) UTF-8 UTF-16 Yes

CU14 UTF-8 UTF-32 Yes

CU21 (CUUTF) UTF-16 UTF-8 Yes

CU24 UTF-16 UTF-32 Yes

CU41 UTF-32 UTF-8 No

CU42 UTF-32 UTF-16 No

CC=0 if the entire source operand was converted

CC=1 if end of destination operand was reached

CC=2 if either well-formedness check fails or character is invalid

CC=3 if not entire source operand was processed yet (can be restarted)

As usual, the registers are updated with where the operation was at the time 



Find Leftmost One (bonus)

• Format: FLOGR R1,R2

• Find the bit position of leftmost one bit in R2 (64-bit) and 

store into register pair R1, R1+1:

• If one bit is found in R2 (R2 nonzero)

• R1 will get its index, as 64-bit number, counting from 0 from left

• R1+1 will get contents of R2 with the found one bit set to zero

• CC = 2

• If no one bit is found in R2 (R2 is zero)

• R1 = 64, R1+1 = 0, CC = 0

• Again, this is useful for operations with bitmaps



The End

• Reference: z/Architecture Principles of Operation, 9th ed.

• Thanks for your attention

• Questions?


